FIRE PERFORMANCE GUIDE TO TIMBER CLADDING
Timber cladding is an increasingly popular choice for Australian commercial and domestic buildings due to its striking natural aesthetic, durability and low environmental impact. Perhaps less widely known are the strong fire-resistant qualities of timber that make it a perfect fit for fire safety in the Australian construction industry.

Timber is an age old material and its physical properties and fire performance qualities are well understood and documented. The Australian Building Code Board (ABCB) recognises the many applications where timber exceeds the rigorous fire safety performance requirements of the National Construction Code (NCC) for use as internal and external wall cladding.

This whitepaper will outline in detail the deemed to satisfy (DtS) solutions for timber cladding for Class 2 – 9 constructions, as outlined in NCC Volume 1 - Section C: Fire Resistance, as well as opportunities for use outside the DtS with the development of a performance solution.

How Does Timber Burn?

To understand why timber cladding is recognised for its fire resistant qualities, it is important to first understand how timber burns.

When timber is first exposed to temperatures of above 280°C, the surface layer of the wood ignites and burns. This layer rapidly turns into char becoming a thermal insulator for the solid wood that lies beneath it. The initial charring rate quickly decreases as the charcoal layer struggles for oxygen and heat energy required to continue combustion.

The natural insulating qualities of timber mean that whilst temperatures at the char layer may be upwards of 280°C, there is a steep temperature gradient across the char resulting in much lower temperatures at the inner wood. This allows the inner layer of timber to retain its structural adequacy and integrity whilst also assisting with compartmentation of heat from the fire source.

Under the char layer, there is a layer of heated wood above 200°C known as the pyrolysis zone. The charring rate at the pyrolysis zone is fairly constant and is a function of density and moisture content of the timber. High density timbers have a much greater resistance to ignition and tend to have a slower charring rate.

Many non-combustible materials do not retain structural strength under high heat load which results in deformation (or melting which can cause spread of flame) and eventually collapse. Steel products can drastically decline in strength under heat loads causing unpredictable and sudden failure. Moisture in masonry products can vapourise causing cracking and dangerous explosions with the potential for throwing shrapnel.

Timber, on the other hand, shows a controlled and slow decline in strength proportional to the char layer often making it a safer alternative to some non-combustible materials. Timber’s predictable nature in the case of fire provides simplicity and confidence in the design of fire safety systems in any construction scenario.

Redefining our Understanding of Combustible

In the wake of incidents such as the 2017 Grenfell Tower fire in London and the public debate that has followed, the label ‘combustible’ in relation to external cladding has been used synonymously with dangerous and non-compliant materials. It is therefore imperative to clarify the difference between dangerous materials used in non-compliant applications (in Grenfell’s case, highly ignitable aluminum composite panels used in a high rise context) and combustible cladding materials used in compliant applications (such as timber cladding in a low rise context).

Although combustible, the predictable characteristics of timber make it easy to model and design appropriate fire protection systems that underpin the application limitations of the deemed to satisfy solutions for timber cladding in the NCC.

The DtS solutions and verification methods defined in the NCC allow for timber cladding, such as Weathertex hardboard cladding products, to be used as part of an internal or external wall or ceiling across all construction classes. The following sections will step through the NCC requirements for wall cladding and present compliant applications for timber cladding in closer detail.
A Performance based code

“The NCC is a performance based code containing all Performance Requirements for the construction of buildings. It is built around a hierarchy of guidance and code compliance levels, with the Performance Requirements being the minimum level that buildings and building elements must meet.

The Performance Requirements are also supported by General Requirements, which cover other aspects of applying the NCC including its interpretation, reference documents, the acceptance of design and construction (including related evidence of suitability /documentation) and the classification of buildings within the NCC.

The key to the performance based NCC is that there is no obligation to adopt any particular material, component, design factor or construction method. This provides for a choice of compliance pathways. The Performance Requirements can be met using either a Performance Solution (Alternative Solution) or using a Deemed-to-Satisfy (DTS) Solution.”

*Referenced from the Australian Building Codes Board (ABCB) Website

Fire Performance Requirements

Section C of NCC – Volume 1 refers to Fire Resistance and contains the Performance Requirements and Deemed to Satisfy Provisions for for Class 2 to 9 constructions.

The performance requirements for fire resistance are centered on several key objectives:

- Maintaining structural stability during a fire
- Avoiding the spread of fire
- Protecting the building from the spread of fire and smoke to allow sufficient time for evacuation in an emergency
- Maintain tenable conditions during occupant evacuation
- Protection of service equipment and hazardous substances
- Protection of emergency equipment
- Maintaining fire resistance performance at penetrations, joints and attachments
- Access to the building for emergency vehicles & personnel

Additionally, Section 2.3 of NCC – Volume 2 refers to Fire Safety and contains the Performance Requirements for Class 1 and 10 constructions. The Deemed to Satisfy (or Acceptable Construction) Provisions for wall cladding are contained in Section 3.5 and are not covered by this guide.

Due to the lower complexity of Class 1 & 10 constructions, the fire performance requirements and objectives are correspondingly simplified:

- Protection from the spread of fire
- Fire detection and early warning
- Protection from heating appliances
- Resistance to bushfires

In all cases, the Builder/Designer/Architect may choose to follow the DTS provisions provided in the NCC to achieve compliance to the relevant performance requirements. Where the design application does not fit with standard DTS solutions, a Performance Solution must be developed in collaboration with the project stakeholders (i.e. architect, engineer, surveyor, local fire authorities, etc).
Deemed to Satisfy Provisions

Class 2–9 Construction

NCC Volume 1: Section C - Fire Resistance provides the following DtS subsections:

Subsections C2 and C3 focus on application design and not material selection and will not be discussed further in this document. The deemed to satisfy provisions of C1 which are relevant to material selection for internal and external wall and ceiling linings are tabulated below.

C1.1 Type of Construction

This section allocates a Fire Construction Type (A, B or C) to the building. Refer to ‘C1.1 and C1.5 Type of Construction Required’ section below.

Specification C1.1 defines non-combustibility requirements according to these construction types. Refer to ‘Specification C1.1 Non-combustibility Requirements’ section below including concessions for combustible products.

Specification C1.1 also lists Fire Resistance Level (FRL) requirements of the components. Refer to ‘Specification C1.1 Fire Resistance of Building Elements’ section below.

C1.5 Two Storey Construction

For buildings of class 2,3 and 9c only - the construction can be classified as Type C Fire Construction Type if it satisfies the conditions listed in the ‘C1.1 and C1.5 Type of Construction Required’ section below.

C1.10 Fire Hazard Properties

This section specifies the material property requirements for the floor coverings, ceiling linings, internal wall linings and external wall cladding. Specification C1.10 details the material testing requirements depending on if a sprinkler system is installed or not. Refer to ‘C1.10 Fire Hazard Properties’ section below.

Part G5 Bushfire Areas

References AS 3959 which designates the requirements for each Bushfire Attack Level (BAL). Refer to ‘Part G5 Bushfire Areas’ section below.

C1.1 and C 1.5 Type of Construction Required

The construction “Type” is determined by the class of building (see ABCB website for class descriptions) and the rise in storeys above and including the ground level. Type A is the most fire-resistant and Type C is the least. The minimum Type of construction is determined using Table C1.1:

<table>
<thead>
<tr>
<th>TABLE C1.1</th>
<th>BUILDING CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISE IN STORIES</td>
<td>2,3,9</td>
</tr>
<tr>
<td>4 or more</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

As per C1.5, a two storey Class 2, 3, or 9c construction may be classified Type C if:

(A) it is a Class 2 or 3 building or a mixture of these classes and each sole-occupancy unit has:
1. access to at least 2 exits; or
2. its own direct access to a road or open space; or

(B) it is a Class 9c building protected throughout with a sprinkler system complying with Specification E1.5 and complies with the maximum compartment size specified in Table C2.2 for Type C construction.
Specification C1.1
Non-combustibility Requirements

In the most recent cases of wall cladding product non-compliances such as the 2017 London Grenfell Tower and 2014 Melbourne Docklands Lacrosse Apartments, the suitability of combustible cladding for high-rise construction has been scrutinized.

In Australia, the National Construction Code requires, for Type A and B construction, that all external and common walls to be non-combustible (as determined by AS 1530.1).

Type C construction does not carry this requirement and combustible cladding may be used for external walls and still comply with the performance requirements of NCC Section C.

Additionally, Specification C1.1 lists concessions which allow combustible external wall cladding for Type A and B low rise construction in Class 2 and 3 buildings. Refer to the two concessions below (directly referenced from NCC 2016 Amendment 1 – Volume 1).

Specification C1.1 - 3.10 Class 2 & 3 buildings: concession (Type A Construction)

(A) A Class 2 or 3 building having a rise in storeys of not more than 3 need not comply with Clause 3.1(d) of Specification C1.1 and the requirements of C1.9(a), (b) and C2.6 for non-combustible material, if it is constructed using—

1. timber framing throughout; or
2. non-combustible material throughout; or
3. a combination of 1. and 2., provided—
 (a) any insulation installed in the cavity of a wall required to have an FRL is non-combustible; and
 (b) the building is fitted with an automatic smoke alarm system complying with Specification E2.2a.

(B) A Class 2 or 3 building having a rise in storeys of not more than 4 may have the top three storeys constructed in accordance with (A) provided—

1. the lowest storey is used solely for the purpose of parking motor vehicles or for some other ancillary purpose; and
2. the lowest storey is constructed of concrete or masonry including the floor between it and the Class 2 or 3 part of the building above; and
3. the lowest storey and the storey above are separated by construction having an FRL of not less than 90/90/90 with no openings or penetrations that would reduce the fire-resisting performance of that construction except that a doorway in that construction may be protected by a —/60/30 self-closing fire door.

Specification C1.1 – 4.3 Class 2 & 3 buildings: concession (Type B Construction)

(A) A Class 2 or 3 building having a rise in storeys of not more than 2 need not comply with Clause 4.1(e) of Specification C1.1 and the requirements of C1.9(a) and (b) for non-combustible materials, if it is constructed using—

1. timber framing throughout; or
2. non-combustible material throughout; or
3. a combination of 1. and 2., provided—
 (a) any insulation installed in the cavity of a wall required to have an FRL is non-combustible; and
 (b) the building is fitted with an automatic smoke alarm system complying with Specification E2.2a.

(B) A Class 2 or 3 building having a rise in storeys of not more than 2 may have the top storey constructed in accordance with (A) provided—

1. the lowest storey is used solely for the purpose of parking motor vehicles or for some other ancillary purpose; and
2. the lowest storey is constructed of concrete or masonry including the floor between it and the Class 2 or 3 part of the building above; and
3. the lowest storey and the storey above are separated by construction having an FRL of not less than 90/90/90 with no openings or penetrations that would reduce the fire-resisting performance of that construction except that a doorway in that construction may be protected by a —/60/30 self-closing fire door.
Specification C1.1 Fire Resistance of Building Elements

In addition to identifying the applications where combustible cladding may be used, Specification C1.1 lists the minimum Fire Resistance Level (FRL) for several building elements (including internal and external walls).

Fire Resistance refers to the graded ability in minutes of a construction element to resist a fully developed fire, as determined by AS 1530.4, for the following criteria:

Structural adequacy: the ability to maintain stability and adequate load bearing capacity as determined by AS 1530.4

Integrity: the ability to resist the passage of flames and hot gases as specified by AS 1530.4

Insulation: the ability to maintain a temperature over the whole of the unexposed surface below that specified by AS 1530.4

Results are expressed in minutes in the order above (e.g., 60/60/60). Note: a dash means that there is no requirement for that criterion (e.g., 90/–/– means there is no requirement for an FRL for integrity and insulation, and –/–/– means there is no requirement for an FRL).
Timber cladding is an increasingly popular choice for Australian commercial and domestic buildings due to its striking natural aesthetic, durability and low environmental impact.
Fire Hazard Properties

C1.10 Fire Hazard Properties

Fire hazard properties are material behavior indicators observed under specific fire test conditions.

Material Group Number is an indicator of a material’s fire hazard properties where Group 1 is the highest classification and Group 4 being the poorest performing classification. The group number is used to identify where a material may be used in accordance with Specification C1.10.

Internal and external wall and ceiling linings are subject to the requirements of Section 4 of Specification C1.10 and requirements for walls differ depending on if the building is protected by a sprinkler system as detailed in Table 3 of the specification.

<table>
<thead>
<tr>
<th>Spec C1.10 - Table 3</th>
<th>FIRE EXITS & CONTROL ROOM</th>
<th>PUBLIC CORRIDORS</th>
<th>SPECIFIC AREA</th>
<th>OTHER AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILDING CLASS</td>
<td>WALL/CEILING</td>
<td>WALL</td>
<td>CEILING</td>
<td>WALL</td>
</tr>
<tr>
<td>CLASS 2 OR 3*</td>
<td>Unsprinklered</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
</tr>
<tr>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>*Class 3 or 9a accommodation for the aged, disabled, children and health care buildings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsprinklered</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
</tr>
<tr>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Class 5, 6, 7, 8 or 9b schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsprinklered</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Class 9b other than schools</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsprinklered</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1, 2</td>
</tr>
<tr>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>Class 9c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>

Buildings not fitted with a sprinkler system complying with Specification E1.5 must also have:

1. A Smoke Growth Rate Index not more than 100; or
2. An Average Specific Extinction Area less than 250m²/kg.

Group number and average specific extinction area may be determined in accordance with AS 5637.1. Generally, most hardwood timber products achieve a Group 3 classification and timber treated with fire retardants can achieve a Group 2 classification.
With regards to external timber cladding compliance, the following requirements apply in accordance with AS 3959 for each BAL classification. Note: the requirements in the table are in addition to ‘General’ construction design requirements detailed in AS 3959.

Timber Weatherboards and Architectural Panels as External Wall Cladding

<table>
<thead>
<tr>
<th>Classification</th>
<th><400mm from ground, deck, roof, awning or similar</th>
<th>>=400mm from ground, deck, roof, awning or similar</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAL LOW</td>
<td>No requirements</td>
<td>No requirements</td>
</tr>
<tr>
<td>BAL 12.5</td>
<td>5.4.1 External walls shall be of (d) a timber species as specified in Appendix E</td>
<td>No requirements</td>
</tr>
<tr>
<td>BAL 19</td>
<td>6.4.1 External walls shall be of (d) a timber species as specified in Appendix E</td>
<td>No requirements</td>
</tr>
<tr>
<td>BAL 29</td>
<td>7.4.1 External walls shall be of (b)(iii) bushfire-resisting timber in Appendix F</td>
<td>7.4.1 External walls shall be of (b)(iii) bushfire-resisting timber in Appendix F</td>
</tr>
<tr>
<td>BAL 40</td>
<td>8.4.1 External walls shall be (a) made from non-combustible material or (c) a system complying with AS 1530.8.1</td>
<td>8.4.1 External walls shall be (a) made from non-combustible material or (c) a system complying with AS 1530.8.1</td>
</tr>
<tr>
<td>BAL FZ</td>
<td>9.4.1 External walls shall be (a) made from non-combustible material of 90mm minimum thickness or (b) a system complying with AS 1530.8.2 when tested from the outside</td>
<td>9.4.1 External walls shall be (a) made from non-combustible material of 90mm minimum thickness or (b) a system complying with AS 1530.8.2 when tested from the outside</td>
</tr>
</tbody>
</table>

BAL12.5 and BAL19 references Clause E1 of Appendix E

Timber in whole or reconstituted form with a density of 750kg/m³ or greater at a 12% moisture content is suitable for construction where specified in Sections 5 and 6 (i.e. BAL 12.5 and BAL 19). Table E1 lists examples of suitable timber species and densities not listed in Table E1 may be found in AS 1720.2.

BAL 29 references Clause F1 of Appendix F

Bushfire-resisting timber products which have been impregnated with fire-retardants or applied with fire-retarding coatings can be deemed acceptable to withstand BAL 29 exposure when tested in accordance with AS/NZS 3837 and accelerated weathering treatment of AS 1684.2. Clause F4 lists several timber species which have been tested as compliant. Other timber products when exposed to an irradiance level of 25 kW/m², must achieve a maximum heat release rate of 100 kW/m² and an average heat release rate for 10 minutes not greater than 60 kW/m².
Weathertex Ticks
All the Boxes

As the winner of Architecture & Design’s Most Trusted Brand 2016/17, and ACA supplier of the year 2018, Weathertex places safety as a number one priority. Weathertex timber cladding has undergone extensive third-party testing to ensure compliance with the latest DiS requirements and verification methods.

Weathertex products are made from a reconstituted blend of Australian native hardwoods from NSW pulp wood forestry operations. The unique process steam pulps and compresses the hardwood fibre blend into a highly dense exterior grade board product. No chemical additives are required for bonding and the final product retains the natural fire resistant properties of the Australian hardwood timbers used.

While individual testing certificates are available on re-quest, Weathertex has compiled and summarised all third party and internal quality testing results in two documents available on the Weathertex Website:
1. Weathertex Certificate of Physical Properties, and
2. Weathertex NCC Compliance Summary

The following sections of this document specifically detail Weathertex compliance with the DiS provisions of Part C of the NCC for Weathertex weatherboard and architectural panel products.

C1.10 Weathertex & Fire Hazard Properties

Weathertex has been third party tested In accordance with AS/NZS 5637.1, as referenced by Spec C1.10. Weathertex is classified as a Group 3 material with an average specific extinction area of 38.7m2/kg. Weathertex is therefore deemed to satisfy for use as a wall and ceiling lining anywhere a Group 3 material is allowed in accordance with Table 3 of NCC specification C1.10.

<table>
<thead>
<tr>
<th>BUILDING CLASS</th>
<th>FIRE EXITS & CONTROL ROOM</th>
<th>PUBLIC CORRIDORS</th>
<th>SPECIFIC AREA</th>
<th>OTHER AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WALL/CEILING</td>
<td>WALL</td>
<td>CEILING</td>
<td>WALL</td>
</tr>
<tr>
<td>CLASS 2 OR 3*</td>
<td>Unsprinklered</td>
<td>1</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Sprinklered</td>
<td>1</td>
<td>1, 2, 3</td>
<td>1, 2, 3</td>
</tr>
</tbody>
</table>
| | *Class 3 or 9a accommodation for the aged, disabled, children and health care buildings
| Unsprinklered | 1 | 1 | 1 | 1.2 | 1.2 | 1.2, 3 |
| Sprinklered | 1 | 1, 2 | 1.2 | 1.2, 3 | 1, 2, 3 |
| Class 5, 6, 7, 8 or 9b schools | Unsprinklered | 1 | 1.2 | 1.2 | 1.2, 3 | 1, 2, 3 |
| | Sprinklered | 1 | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 | 1, 2, 3 |
| Class 9b other than schools | Unsprinklered | 1 | 1 | 1 | 1.2 | 1.2, 3 |
| | Sprinklered | 1 | 1, 2 | 1.2 | 1.2, 3 | 1, 2, 3 |
| Class 9c | Sprinklered | 1 | 1.2 | 1.2 | 1.2, 3 | 1, 2, 3 |

Part G5 Weathertex & Bushfire Areas

Weathertex has been assessed by a third party against the requirements of AS 3959 and an assessment report is available on request. Weathertex has an average product density of 1020 kg/m3 and the manufacturing process controls the supplied timber specification to only source fire resistant timber species as listed in Appendix E of AS 3959. Weathertex meets the material physical properties required for use in BAL LOW, BAL 12.5 and BAL 19 areas.

C1.1 Weathertex & Type of Construction Required

Taking into account allowances for two storey construction detailed in C1.5 and the Type A and B concessions for Class 2 and 3 construction in C1.1 (Clauses C1.1 – 3.10 and C1.1 – 4.3), the following table summarises where Weathertex timber cladding may be used under the DiS provisions:

<table>
<thead>
<tr>
<th>BUILDING CLASS</th>
<th>MAXIMUM RISE IN STORIES</th>
<th>CONDITIONS</th>
</tr>
</thead>
</table>
| 2 | 1, 2, 3 or 4** | *concession conditions apply
| | | **if the bottom story is a concrete car park concession conditions apply
| 3 | 1, 2, 3 or 4** | *concession conditions apply
| | | **if the bottom story is a concrete car park concession conditions apply
| 4 | 1* | *Rules for Class 4 can change depending on the nature of the building
| 5 | 2 |
| 6 | 2 |
| 7 | 2 |
| 8 | 2 |
| 9a | 1 |
| 9b | 1 |
| 9c | 1 or 2** | *if the conditions of C1.5 are met

Where internal or external walls are required to be fire resisting, Weathertex cladding may be used in conjunction with fire rated plasterboard products as specified in the Weathertex Installation Manual for FRL wall requirements of up to 120/120/120 (including 30/30/30, 60/60/60 and 90/90/90).
The value of Innovation – Performance Solutions

With the 2016 review of the NCC by the Australian Building Code Board and relevant professional committees, there has been a focus on driving innovation and architectural design through the development of Performance Solutions for products and applications which may not fit the cookie-cutter scope of current Dis solutions.

Many applications of combustible cladding (e.g. balcony linings, attachments to concrete structures, isolated feature walls, blade walls etc.) can sensibly achieve the required fire safety performance criteria of Section C of the code with the right fire protection design.

The Performance Solution report is usually prepared by an appropriately qualified fire engineer who can demonstrate the application meets the fire safety Performance Requirements for acceptance by the project’s building certifier/surveyor. As a Performance Solution for the use of combustible materials will likely influence the design of other characteristics of the building, the ABCB advises that the fire engineer, building certifier/surveyor and the local firefighting authorities are involved at an early stage in the project.

Performance Solutions are a great opportunity for innovation and creativity. This compliance pathway is intended to encourage the introduction of new materials, technologies and methodologies which could achieve a new efficiency, cost-reduction or improvement in the environmental impact of construction whilst still maintaining a high performance standard. The Australian Building Codes Board has stated that the use of a performance based approach to compliance “provides practitioners with a strong degree of flexibility to determine the most appropriate means for demonstrating compliance with the relevant performance requirements.”

Consequently, Weathertex Timber Weatherboards and Architectural Panels can be considered for internal and external cladding applications outside the Dis solutions provided that a Performance Solution demonstrates the building design and product application meets the relevant fire safety Performance Requirements of the NCC.

References

ABCB Website

Last issued: August 2018